Computerized system for the screening of Specific learning and language disorders within bilingual children

ESR: Maren R. Eikerling1,2, supervisor: Maria Luisa Lorusso1
1 IRCCS - Associazione La Nostra Famiglia “Istituto scientifico Eugenio Medea” (Bosisio Parini (LC), Italy)
2 Program “Psychology, Linguistics and Cognitive Neuroscience” (University of Milano-Bicocca, Italy)

Background
- with an increasing number of bilingual children, education and health care professionals take risks of misdiagnosis (under-/overdiagnosis) of developmental language disorders (DLD) and developmental dyslexia (DD)
- need for methods and trained professionals to distinguish poor language proficiency due to bilingualism from DLD/DD
- need to define markers to identify the risk of DLD/DD in bilingual children possible implementation solutions:
 - bilingual assessments through bilingual SLPs (rare)
 - language-universal assessment (never truly language-universal)
 - language specific assessment with automatized analysis

Objective: language specific screening batteries with automatized analysis
- selection of languages (representative of language families, linguistic communities in Italy)
- selection of language-specific clinical markers (considering amount of exposure)
- design of corresponding screening tasks
- implementation into a computerized screening and evaluation system
- administration to typically developing (TD) bilingual children
- evaluation of the tests and the system, definition of the final version
- administration to bilingual children with DLD/DD
- analysis of the discriminating power of the screening tests (specificity and sensitivity)

<table>
<thead>
<tr>
<th>Developmental Language Disorder (DLD)</th>
<th>English-Italian</th>
<th>Spanish-Italian</th>
<th>Italian-German</th>
<th>Mandarin/Wenzhounese-Italian</th>
</tr>
</thead>
<tbody>
<tr>
<td>phonology</td>
<td>nonword-repetition tasks (NWRT)</td>
<td>rhyme/onset/tone detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>morphology/syntax</td>
<td>L1 (past) tense marking</td>
<td>verb morphology (3rd pers. pl., finiteness); direct object clitics</td>
<td>L1 verb morphology; clitics</td>
<td>L1 aspect marking; negation</td>
</tr>
<tr>
<td>L2 article-noun-agreement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lexicon</td>
<td></td>
<td>conceptual vocabulary store (especially verb knowledge); (receptive) picture-matching tasks (see e.g. CLTs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reading</td>
<td>syllable, word, nonword & sentence reading speed & accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metaphorology</td>
<td>rhyme/tone/accen detection, phonological blending, syllabic inversion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>others</td>
<td>RAN digits; dynamic reading assessment; neuropsychological/linguistic skills</td>
<td>visual attention</td>
<td>character analysis</td>
<td></td>
</tr>
</tbody>
</table>

Outlook
Implementing language-specific and quasi-universal (dynamic assessment, visual/auditory skills) tasks, we will walk a thin line between the most promising and the most applicable paradigms. Integrating recent research findings and merging them with user-friendly soft- and hardware, the outcomes have important economic as well as non-economic implications for health and education services across Europe.

This project has received funding from the European Union’s Horizon2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 765536.